
Fault Tolerant Stateful Services on 
Kubernetes

Timothy St. Clair
@timothysc



Thank You For Attending!
Many thanks to our:

Sponsors! 

Fast Forward Fest Organizers!

Big Data Wisconsin Organizers!



Who ... Kubernetes? 
(has heard of, has tinkered with, is using)



More like a “Road Trip” 
through space-time of cluster 

management to arrive at 
running Stateful Services on 

Kubernetes



Ground Rules
● Questions GOOD, too many questions BAD.
● Spread the Word - #Kubernetes, @timothysc, 

@BigDataWI, #FwdFest, @Heptio 
● Going to gloss over container technology



Who is this guy?
I’m no Kelsey Hightower, but… 

I’ve been working exclusively on grid, cluster management, 
and big data engines for about a decade.

● I love this space b/c it’s the leatherman of computer 
science.  (This $HI& is fractal) ~jbeda

● Condor alum
● Mesos committer and PMC member
● Active SIG lead and core contributor to the Kubernetes 

project since inception…
● Staff Engineer @ a Seattle Based Startup Heptio

○ We are spreading the gospel of kube



What I’m going to talk about today...
● Brief history and motivations of Kube 
● Core concepts and components (Kube 101)
● BD Workload and application profiles  
● Stateful integrations into the platform
● Hand-wavy “FuTuRe” 



LET’S TALK ABOUT K8S!!! 



What is Kubernetes … 2014 Definition
Kubernetes is an open source 
system for managing containerized 
applications across multiple hosts, 
providing basic mechanisms for 
deployment, maintenance, and 
scaling of applications.

What “It” is really depends on your 
perspective, as each actor will have 
their own take on kubernetes.

● Operator
● Developer
● IT/Manager

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/


Richard 
Feynman  
~You're unlikely to discover 
something new without a lot of 
practice on old stuff.



Background / History



Where did kubernetes come from?
Kubernetes builds upon a decade 
and a half of experience at Google 
running production workloads at 
scale using a system called Borg, 
combined with best-of-breed ideas 
and practices from the community.

Why create Borg in the first place?

● Traditional models don’t scale.
○ Poor Utilization

■ $$ - People and HW.
○ Application lifecycle 

management
■ Mean time to update 

SW

https://research.google.com/pubs/pub43438.html


Motivations - Utilization



Average cluster 
utilization is ~5-10% if 
you’re good.  Sans 
Cluster Managers.



Improving Resource Efficiency with Apache Mesos ~ C. Delimitrou

IMAGE or VIDEO



“The reason you can do BIG DATA ‘in general’ 
is because there is a huge amount of slack 

resources in these systems” 

– Eric Brewer (Dockercon 2014)



Other Dimensions to Utilization - “Good Fences”
Application density is and 
oversubscription mechanisms are 
another dimension that matters.  In 
order to allow that there needs to be 
better isolation and accounting.

2005: cpusets

2006: cgroups

2009: bandwidth fair use, QoS level

2010: memcg for accounting.

Namespacing.



Enter Containers
Around 2014 containers became 
more usable and provided a means 
to bundle applications and their 
dependencies and allow for 
applications to be sent transmitted to 
any machine. 

This is a key differentiation from 
other cluster management tools 
such as YARN.  





Motivations-
Application Lifecycle Management



Application Lifecycle Management is a PITA
Even today there is a “cornucopia of tooling”:

● Chef 
● Puppet
● Ansible 
● Salt 
● Terraform 
● Custom Scriptery

Managing (N) service stacks in across a fleet is 
a mess without a set of unifying principles, and 
definitions of what those applications do. 



Modeling of Applications
● Application components and aspects of lifecycle are broken down into 

declarative abstractions that can be used to deploy and manage 
applications.

● Applications reach eventual consistency through the use of independent 
controllers that are typically associated 1:1 with a given primitive. 

● Connectivity of applications is abstracted through the use of services, or 
cluster resolvable endpoints.  



Re-phrased 
“Kubernetes is an application deployment, 

and lifecycle management system that 
enables higher utilization of your clusters 

resources.” 
Or ...  

“It’s a scalable way of managing 
applications across a fleet of machines” 

Or ...



Core Concepts - Kube 101



Pods
● Pods are the atom of scheduling and are a group of containers that are 

scheduled onto the same host.  “co-scheduling” 
● Pods facilitate data sharing and communication between containers within a 

pod. 
○ Shared mount point, ip, namespaces … 

● Benefits
○ This is very unique… mesos, yarn, condor, lsf, sge don’t have this
○ Helps a lot with managed complexity 
○ Great for producer / consumer models to reduce complexity

■ Security



Declaratives & Controllers
● Eventual consistency is maintained by separate controllers typically 

associated per primitive (ReplicaSet, DaemonSet, Deployments, Pods)
● The api is constructed via a composable layered model
● Each controller's purpose is to rectify any discrepancy between the declared 

state of a primitive with the current state of the system

apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
  name: frontend
spec:
  replicas: 3



Services
● Services provide a single, stable name and address for a set of pods.  The 

typically act as a load-balanced proxy endpoint. (non-colliding-nat)
● Cloud based implementations have native support for connecting to external 

load-balancers, otherwise users will need to manage ingress points 
● Provides a construct which is used to lookup, name, and link pods (env 

injection).

Load Balancer

Pod

Pod



Labels
● Are key/value pairs associated with pods and nodes
● Labels enable operators to map their own structures and deployment 

configurations onto objects in a loosely coupled fashion   
● Newer resources, such as Job, Deployment, Replica Set, and Daemon Set, 

support set-based requirements as well.

metadata:
      labels:
        app: guestbook
        tier: frontend

$ kubectl get pods -l tier=frontend

https://kubernetes.io/docs/concepts/jobs/run-to-completion-finite-workloads/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/


Storage - PVs and PVC
● Provides a means to attach a mounted network attached storage facility to a 

Pod
● Provides an API for users and administrators that abstracts details of how 

storage is provided from how it is consumed
● Great for stateless web-applications… Slow for stateful services



That was a lot if you are new to this, how are 
you doing? 



Core Components and Behavior - Kube 101







Workload & Application Profiles



Understanding your workloads



“The reason you can do BIG DATA ‘in general’ 
is because there is a huge amount of slack 

resources in these systems” 
– Eric Brewer (Dockercon 2014)

“Sounds all rainbows and kittens, but there 
is a lot of tooling and policy required to 

make it not suck.”
– Me (Now)



Big Data Applications are … “Special”

● The more service oriented BD workloads “tend” to be…
○ More “stateful”
○ Have fault tolerance built in, and leverage local storage (ES, Cassandra)
○ Mindfully elastic, controlled scaling (Operator)
○ Require stricter naming and ordinality (ZK)

● The more batch oriented “tend” toward … 
○ “Best-Effort” QoS tiers
○ Would love to be greedy use as many resources as it can

■ OM NOM NOM your resources are delicious



Gut Check, “How are you holding in there?”



Stateful Services 
Guide Rails not Tracks



Stateful Services
● Requires Several Other Primitives:

○ StatefulSets are a declarative primitive for Pods / Applications Care about
■ Ordinality (0,1,2 …) [ZK] 

● Order stand-up and tear-down. 
● web-{0..N-1}.nginx.default.svc.cluster.local

■ Stable Network Matters 
○ Taints and Tolerations

■ Storage needs to be treated with care. 
● Leverage Taints and tolerations

○ TolerationSeconds is useful
○ PodDisruptionBudgets 

■ Prevent large disruptions
○ Anti-affinity (avoid same hosts)



Stateful Services

Let’s walk through an example vs. 20 more slides:

https://kubernetes.io/docs/tutorials/stateful-application/zookeeper/ 

https://kubernetes.io/docs/tutorials/stateful-application/zookeeper/


Understanding the Boundaries of Declaratives
● Controlled Scaling Events 

○ Rebalancing
○ Remove a Member / Assign a new Member
○ Controlled / planned replication

● When in doubt look for an “Operator” or purpose built controller
○ “An operator is a piece of software that essentially knows a lot of the 

operational best practices, for whatever piece of software the operator is built 
for and can deploy that piece of software in a good configuration on top of 
Kubernetes, and then keep it healthy over time.”



Crystal Ball Prognostications



HaNd-WaVy “fUtUrE”
● Operators for more BD applications and management of legacy stateful 

services
○ ES, etcd, kafka, ZK.
○ Native Spark Integration 
○ Kubernetes Arbitrator for more flexible policy and NS borrowing  

● New native BD applications
○ Kubernetes has all the primitives available to create your own new 

framework which is native to the system
○ Don’t reinvent the square wheel



Richard 
Feynman  
I have approximate answers and 
possible beliefs and different 
degrees of certainty about 
different things, but I'm not sure 
of anything!



Thank you!
inquiries@heptio.com


